Neural Network Modeling for Proton Exchange Membrane Fuel Cell (PEMFC)
نویسندگان
چکیده
This paper presents the artificial intelligence techniques to control a proton exchange membrane fuel cell system process using particularly a methodology of dynamic neural network. The focus of this study is to derive a non-parametric empirical model. Also it will include process variations to estimate the performance of fuel cells without extensive calculations. The ANN model has been validated with experimental results. Experimental results are used and presented for identifying the proposed approach, which is useful in improving performance for PEMFC and developing electrical system on advanced vehicles and ships. All experimental data are fitted very well with the ANN models over a wide operating range. The ANN models can be used to investigate the influence of process variables for design optimization of fuel cells, stacks, and complete fuel cell power system.
منابع مشابه
Studies on the SPEEK membrane with low degree of sulfonation as a stable proton exchange membrane for fuel cell applications
Sulfonated poly (ether ether ketone) (SPEEK) with a low degree of sulfonation (DS = 40%) was prepared for proton exchange membrane fuel cells (PEMFC). Poly (ether ether ketone) (PEEK) was sulfonated in concentrated H2SO4 under N2 atmosphere and characterized by the hydrogen nuclear magnetic resonance (H-NMR) technique. After preparation of the SPEEK polymer, the obtained polymer was dissolved i...
متن کاملNovel PVA/La2Ce2O7 hybrid nanocomposite membranes for application in proton exchange membrane fuel cells
Proton exchange membrane fuel cells (PEMFCs) are electrochemical devices that show the highest power densities compared to the other type of fuel cell. In this work, nanocomposite membranes used for proton exchange membrane fuel cells as poly(vinyl alcohol)/La2Ce2O7 (PVA-LC) with the aim of increasing the water uptake and proton conductivity. Glutaraldehyde (GA) was used as cross linking agent ...
متن کاملThree Dimensional Computational Fluid Dynamics Analysis of a Proton Exchange Membrane Fuel Cell
A full three-dimensional, single phase computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both the gas distribution flow channels and the Membrane Electrode Assembly (MEA) has been developed. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region are developed and numer...
متن کاملA Predictive control based on Neural Network for Proton Exchange Membrane Fuel Cell
The Proton Exchange Membrane Fuel Cell (PEMFC) control system has an important effect on operation of cell. Traditional controllers couldn’t lead to acceptable responses because of timechange, longhysteresis, uncertainty, strongcoupling and nonlinear characteristics of PEMFCs, so an intelligent or adaptive controller is needed. In this paper a neural network predictive controller have been desi...
متن کاملA Neuro Adaptive Control Strategy for Movable Power Source of Proton Exchange Membrane Fuel Cell Using Wavelets
Movable power sources of proton exchange membrane fuel cells (PEMFC) are the important research done in the current fuel cells (FC) field. The PEMFC system control influences the cell performance greatly and it is a control system for industrial complex problems, due to the imprecision, uncertainty and partial truth and intrinsic nonlinear characteristics of PEMFCs. In this paper an adaptive PI...
متن کاملThe effect of inclined radial flow in proton exchange membrane fuel cells performance
Computational fluid dynamics analysis was employed to investigate the radial flow field patterns of proton exchange membrane fuel cells (PEMFC) with different channel geometries at high operating current densities. 3D, non-isothermal was used with single straight channel geometry. Our study showed that new generation of fuel cells with circle stack with the same active area and inlet area gave ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AISS
دوره 2 شماره
صفحات -
تاریخ انتشار 2010